
7. Machine Translation, Seq2seq
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
October 2, 2025
*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University



Table of contents

1. Machine translation

2. Neural machine translation

3. Wrap-up

4. Review: Dependency parser training

1



Review



Review

• RNNs
• Problems with RNNs
• LSTMs
• Bidirectional RNNs

2



Review: Problems with RNNs

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:

• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

3



Review: Problems with RNNs

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:

• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

3



Review: Problems with RNNs

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:

• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

3



Review: Problems with RNNs

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:
• is < 1, gradients shrink exponentially (vanishing).

• is > 1, gradients grow exponentially (exploding).
• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

3



Review: Problems with RNNs

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:
• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

3



Review: Problems with RNNs

• RNNs are equivalent to a deep network of depth 𝑇 when
unrolled over time (T = sequence length/time steps)

• Parameter sharing: the same weight matrices are multiplied at
each time step.

• If each multiplication factor:
• is < 1, gradients shrink exponentially (vanishing).
• is > 1, gradients grow exponentially (exploding).

• Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.

3



Vanishing problem: Solution

Separate memory cell with gating mechanisms to
add/erase information.

4



Review: LSTMs

5



6



7



8



9



10



Review: Bidirectional RNNs

• A standard RNN only uses past context.
• Bidirectional RNNs process the sequence in both directions.

11



12



13



Machine translation



Pre-neural machine translation

• Machine Translation (MT) is the task of translating a sentence x
from one language (source language) to a sentence y in another
language (target language)

Source: https://www.geeksforgeeks.org/nlp/machine-translation-of-languages-in-artificial-intelligence/

14

https://www.geeksforgeeks.org/nlp/machine-translation-of-languages-in-artificial-intelligence/


The early history of MT: 1950s

• Machine translation research began in the early 1950s on
machines less powerful than high school calculators (before the
term AI was coined)

• Concurrent with foundational work on automata, formal
languages, probabilities, and information theory

• MT heavily funded by military, but basically just simple
rule-based systems doing word substitution

• Human language is more complicated than that, and varies
more across languages

• Little understanding of natural language syntax, semantics,
pragmatics ... problem soon appeared intractable...

15



The early history of MT: 1950s

• Machine translation research began in the early 1950s on
machines less powerful than high school calculators (before the
term AI was coined)

• Concurrent with foundational work on automata, formal
languages, probabilities, and information theory

• MT heavily funded by military, but basically just simple
rule-based systems doing word substitution

• Human language is more complicated than that, and varies
more across languages

• Little understanding of natural language syntax, semantics,
pragmatics ... problem soon appeared intractable...

15



The early history of MT: 1950s

• Machine translation research began in the early 1950s on
machines less powerful than high school calculators (before the
term AI was coined)

• Concurrent with foundational work on automata, formal
languages, probabilities, and information theory

• MT heavily funded by military, but basically just simple
rule-based systems doing word substitution

• Human language is more complicated than that, and varies
more across languages

• Little understanding of natural language syntax, semantics,
pragmatics ... problem soon appeared intractable...

15



The early history of MT: 1950s

• Machine translation research began in the early 1950s on
machines less powerful than high school calculators (before the
term AI was coined)

• Concurrent with foundational work on automata, formal
languages, probabilities, and information theory

• MT heavily funded by military, but basically just simple
rule-based systems doing word substitution

• Human language is more complicated than that, and varies
more across languages

• Little understanding of natural language syntax, semantics,
pragmatics ... problem soon appeared intractable...

15



The early history of MT: 1950s

• Machine translation research began in the early 1950s on
machines less powerful than high school calculators (before the
term AI was coined)

• Concurrent with foundational work on automata, formal
languages, probabilities, and information theory

• MT heavily funded by military, but basically just simple
rule-based systems doing word substitution

• Human language is more complicated than that, and varies
more across languages

• Little understanding of natural language syntax, semantics,
pragmatics ... problem soon appeared intractable...

15



1990s-2010s: Statistical machine translation (SMT)

• Idea: Learn a probabilistic model of translation from data.

• Example: Translating from French → English.
• Goal: Find the best English y, given a French x:

argmax𝑦 𝑃(𝑦 ∣ 𝑥)

• Directly modeling 𝑃(𝑦 ∣ 𝑥) is difficult!

16



1990s-2010s: Statistical machine translation (SMT)

• Idea: Learn a probabilistic model of translation from data.
• Example: Translating from French → English.

• Goal: Find the best English y, given a French x:

argmax𝑦 𝑃(𝑦 ∣ 𝑥)

• Directly modeling 𝑃(𝑦 ∣ 𝑥) is difficult!

16



1990s-2010s: Statistical machine translation (SMT)

• Idea: Learn a probabilistic model of translation from data.
• Example: Translating from French → English.
• Goal: Find the best English y, given a French x:

argmax𝑦 𝑃(𝑦 ∣ 𝑥)

• Directly modeling 𝑃(𝑦 ∣ 𝑥) is difficult!

16



1990s-2010s: Statistical machine translation (SMT)

• Idea: Learn a probabilistic model of translation from data.
• Example: Translating from French → English.
• Goal: Find the best English y, given a French x:

argmax𝑦 𝑃(𝑦 ∣ 𝑥)

• Directly modeling 𝑃(𝑦 ∣ 𝑥) is difficult!

16



1990s-2010s: SMT

• Using Bayes’ Theorem:

𝑃(𝑦 ∣ 𝑥) = 𝑃(𝑥 ∣ 𝑦) 𝑃 (𝑦)
𝑃 (𝑥)

• Since 𝑃(𝑥) is fixed (bc we cannot change the input), we can
rewrite the search as:

argmax𝑦 𝑃(𝑥 ∣ 𝑦) ⋅ 𝑃 (𝑦)
• This gives two components to be learned separately:

• Translation Model: 𝑃(𝑥 ∣ 𝑦)
• Language Model: 𝑃(𝑦)

17



1990s–2010s: SMT

• How do we build a language model?

• How can we learn a translation model 𝑃(𝑥 ∣ 𝑦)?
• Requirement: A large amount of parallel data (e.g., pairs of
human-translated French/English sentences)

18



1990s–2010s: SMT

• How do we build a language model?
• How can we learn a translation model 𝑃(𝑥 ∣ 𝑦)?

• Requirement: A large amount of parallel data (e.g., pairs of
human-translated French/English sentences)

18



1990s–2010s: SMT

• How do we build a language model?
• How can we learn a translation model 𝑃(𝑥 ∣ 𝑦)?
• Requirement: A large amount of parallel data (e.g., pairs of
human-translated French/English sentences)

18



Learning alignment of SMT

• How to learn translation model 𝑃 (𝑥 ∣ 𝑦) from the parallel
corpus?

• Break it down further: Introduce latent a variable into the model
𝑃(𝑥, 𝑎 ∣ 𝑦)

• where a is the alignment (i.e., word-level correspondence
between source sentence x and target sentence y)

19



More notes: Alignment

Alignment is the correspondence between particular words in the
translated sentence pair.

• Typological differences between languages lead to complicated
alignments

• Some words might have no counterpart (or too many); not
one-to-one correspondence

20



More notes: Learning alignment

We learn 𝑃(𝑥, 𝑎 ∣ 𝑦) where:

• 𝑦: source sentence (e.g., English)
• 𝑥: target sentence (e.g., French)
• 𝑎: word alignment (latent mapping between words in 𝑦 and 𝑥)

• Alignment 𝑎 is latent: it is not explicitly given in the training data.

• Requires special learning algorithms to estimate parameters
with latent variables.

• e.g., Expectation-Maximization algorithm

• E-step: given current parameters, estimate how likely each
possible alignment is (soft alignment).

• M-step: re-estimate translation probabilities 𝑡(𝑥 ∣ 𝑦) using those
expectations.

21



More notes: Learning alignment

We learn 𝑃(𝑥, 𝑎 ∣ 𝑦) where:

• 𝑦: source sentence (e.g., English)
• 𝑥: target sentence (e.g., French)
• 𝑎: word alignment (latent mapping between words in 𝑦 and 𝑥)

• Alignment 𝑎 is latent: it is not explicitly given in the training data.
• Requires special learning algorithms to estimate parameters
with latent variables.

• e.g., Expectation-Maximization algorithm

• E-step: given current parameters, estimate how likely each
possible alignment is (soft alignment).

• M-step: re-estimate translation probabilities 𝑡(𝑥 ∣ 𝑦) using those
expectations.

21



More notes: Learning alignment

We learn 𝑃(𝑥, 𝑎 ∣ 𝑦) where:

• 𝑦: source sentence (e.g., English)
• 𝑥: target sentence (e.g., French)
• 𝑎: word alignment (latent mapping between words in 𝑦 and 𝑥)

• Alignment 𝑎 is latent: it is not explicitly given in the training data.
• Requires special learning algorithms to estimate parameters
with latent variables.

• e.g., Expectation-Maximization algorithm

• E-step: given current parameters, estimate how likely each
possible alignment is (soft alignment).

• M-step: re-estimate translation probabilities 𝑡(𝑥 ∣ 𝑦) using those
expectations.

21



More notes: Learning alignment

We learn 𝑃(𝑥, 𝑎 ∣ 𝑦) where:

• 𝑦: source sentence (e.g., English)
• 𝑥: target sentence (e.g., French)
• 𝑎: word alignment (latent mapping between words in 𝑦 and 𝑥)

• Alignment 𝑎 is latent: it is not explicitly given in the training data.
• Requires special learning algorithms to estimate parameters
with latent variables.

• e.g., Expectation-Maximization algorithm
• E-step: given current parameters, estimate how likely each
possible alignment is (soft alignment).

• M-step: re-estimate translation probabilities 𝑡(𝑥 ∣ 𝑦) using those
expectations.

21



More notes: Learning alignment

We learn 𝑃(𝑥, 𝑎 ∣ 𝑦) where:

• 𝑦: source sentence (e.g., English)
• 𝑥: target sentence (e.g., French)
• 𝑎: word alignment (latent mapping between words in 𝑦 and 𝑥)

• Alignment 𝑎 is latent: it is not explicitly given in the training data.
• Requires special learning algorithms to estimate parameters
with latent variables.

• e.g., Expectation-Maximization algorithm
• E-step: given current parameters, estimate how likely each
possible alignment is (soft alignment).

• M-step: re-estimate translation probabilities 𝑡(𝑥 ∣ 𝑦) using those
expectations.

21



1990s–2010s: SMT

• SMT was a huge research field

• The best systems were extremely complex

• Hundreds of important details

• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources

• Like tables of equivalent phrases

• Lots of human effort to maintain

• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources

• Like tables of equivalent phrases

• Lots of human effort to maintain

• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details

• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources

• Like tables of equivalent phrases

• Lots of human effort to maintain

• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources

• Like tables of equivalent phrases

• Lots of human effort to maintain

• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources

• Like tables of equivalent phrases

• Lots of human effort to maintain

• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources

• Like tables of equivalent phrases
• Lots of human effort to maintain

• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain

• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain

• Repeated effort for each language pair!
• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

• Era of statistical model then →?

• word embedding
• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

• Era of statistical model then →?
• word embedding

• (text classification)
• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

• Era of statistical model then →?
• word embedding
• (text classification)

• dependency parsing
• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

• Era of statistical model then →?
• word embedding
• (text classification)
• dependency parsing

• language modeling

22



1990s–2010s: SMT

• SMT was a huge research field
• The best systems were extremely complex

• Hundreds of important details
• Systems had many separately-designed sub-components

• Need to design features to capture particular language
phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

• Era of statistical model then →?
• word embedding
• (text classification)
• dependency parsing
• language modeling

22



Neural machine translation



23



What is neural machine translation?

• Neural machine translation (NMT) is a way to do machine
translation with a single end-to-end neural network.

• The neural network architecture is called a
sequence-to-sequence (seq2seq) and it involves two RNNs
(more generally, neural networks).

24



What is neural machine translation?

• Neural machine translation (NMT) is a way to do machine
translation with a single end-to-end neural network.

• The neural network architecture is called a
sequence-to-sequence (seq2seq) and it involves two RNNs
(more generally, neural networks).

24



Seq2Seq Model

• Idea: Mapping one sequence to another.

• Encoder: Reads the input sequence and converts it into a vector
representation.

• Decoder: Generates the output sequence step by step,
conditioned on the encoded input.

• Can be implemented with different architectures:

• Early models: RNN/LSTM-based encoder–decoder
• Modern models: Transformer encoder–decoder

25



Seq2Seq Model

• Idea: Mapping one sequence to another.
• Encoder: Reads the input sequence and converts it into a vector
representation.

• Decoder: Generates the output sequence step by step,
conditioned on the encoded input.

• Can be implemented with different architectures:

• Early models: RNN/LSTM-based encoder–decoder
• Modern models: Transformer encoder–decoder

25



Seq2Seq Model

• Idea: Mapping one sequence to another.
• Encoder: Reads the input sequence and converts it into a vector
representation.

• Decoder: Generates the output sequence step by step,
conditioned on the encoded input.

• Can be implemented with different architectures:

• Early models: RNN/LSTM-based encoder–decoder
• Modern models: Transformer encoder–decoder

25



Seq2Seq Model

• Idea: Mapping one sequence to another.
• Encoder: Reads the input sequence and converts it into a vector
representation.

• Decoder: Generates the output sequence step by step,
conditioned on the encoded input.

• Can be implemented with different architectures:

• Early models: RNN/LSTM-based encoder–decoder
• Modern models: Transformer encoder–decoder

25



Seq2Seq Model

• Idea: Mapping one sequence to another.
• Encoder: Reads the input sequence and converts it into a vector
representation.

• Decoder: Generates the output sequence step by step,
conditioned on the encoded input.

• Can be implemented with different architectures:
• Early models: RNN/LSTM-based encoder–decoder

• Modern models: Transformer encoder–decoder

25



Seq2Seq Model

• Idea: Mapping one sequence to another.
• Encoder: Reads the input sequence and converts it into a vector
representation.

• Decoder: Generates the output sequence step by step,
conditioned on the encoded input.

• Can be implemented with different architectures:
• Early models: RNN/LSTM-based encoder–decoder
• Modern models: Transformer encoder–decoder

25



Seq2Seq Model

26



Seq2Seq: Encoder

• The encoder reads the input sequence step by step and
accumulates information in its hidden states.

• The final hidden state acts as a context vector that summarizes
the entire input sequence.

• e.g., The encoder processes the French sentence and
compresses it into a single vector representation.

27



Seq2Seq: Encoder

• The encoder reads the input sequence step by step and
accumulates information in its hidden states.

• The final hidden state acts as a context vector that summarizes
the entire input sequence.

• e.g., The encoder processes the French sentence and
compresses it into a single vector representation.

27



Seq2Seq: Encoder

• The encoder reads the input sequence step by step and
accumulates information in its hidden states.

• The final hidden state acts as a context vector that summarizes
the entire input sequence.

• e.g., The encoder processes the French sentence and
compresses it into a single vector representation.

27



Seq2Seq: Decoder

• The decoder takes the context vector as its initial state and
generates the output sequence one token at a time.

• At each step, it uses the previous hidden state, the previously
generated token, and the context vector to compute the next
hidden state.

28



Seq2Seq: Decoder

• The decoder takes the context vector as its initial state and
generates the output sequence one token at a time.

• At each step, it uses the previous hidden state, the previously
generated token, and the context vector to compute the next
hidden state.

28



Seq2Seq: Training

• During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

• This strategy is called teacher forcing.
• Advantage: learning becomes stable and converges faster, since
errors do not propagate.

• Example: For the target sentence “I love cats”,

• Step 1: input <start> → train model to output “I”
• Step 2: feed the true word “I” → train model to output “love”
• Step 3: feed the true word “love” → train model to output “cats”

29



Seq2Seq: Training

• During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

• This strategy is called teacher forcing.

• Advantage: learning becomes stable and converges faster, since
errors do not propagate.

• Example: For the target sentence “I love cats”,

• Step 1: input <start> → train model to output “I”
• Step 2: feed the true word “I” → train model to output “love”
• Step 3: feed the true word “love” → train model to output “cats”

29



Seq2Seq: Training

• During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

• This strategy is called teacher forcing.
• Advantage: learning becomes stable and converges faster, since
errors do not propagate.

• Example: For the target sentence “I love cats”,

• Step 1: input <start> → train model to output “I”
• Step 2: feed the true word “I” → train model to output “love”
• Step 3: feed the true word “love” → train model to output “cats”

29



Seq2Seq: Training

• During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

• This strategy is called teacher forcing.
• Advantage: learning becomes stable and converges faster, since
errors do not propagate.

• Example: For the target sentence “I love cats”,

• Step 1: input <start> → train model to output “I”
• Step 2: feed the true word “I” → train model to output “love”
• Step 3: feed the true word “love” → train model to output “cats”

29



Seq2Seq: Training

• During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

• This strategy is called teacher forcing.
• Advantage: learning becomes stable and converges faster, since
errors do not propagate.

• Example: For the target sentence “I love cats”,
• Step 1: input <start> → train model to output “I”

• Step 2: feed the true word “I” → train model to output “love”
• Step 3: feed the true word “love” → train model to output “cats”

29



Seq2Seq: Training

• During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

• This strategy is called teacher forcing.
• Advantage: learning becomes stable and converges faster, since
errors do not propagate.

• Example: For the target sentence “I love cats”,
• Step 1: input <start> → train model to output “I”
• Step 2: feed the true word “I” → train model to output “love”

• Step 3: feed the true word “love” → train model to output “cats”

29



Seq2Seq: Training

• During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

• This strategy is called teacher forcing.
• Advantage: learning becomes stable and converges faster, since
errors do not propagate.

• Example: For the target sentence “I love cats”,
• Step 1: input <start> → train model to output “I”
• Step 2: feed the true word “I” → train model to output “love”
• Step 3: feed the true word “love” → train model to output “cats”

29



Seq2Seq: Inference

(Decoding at Test Time)

• At inference time, the true target words are not available.
• The decoder must use its own predicted word from the previous
step as the next input.

• The process starts with a special <start> token and continues
until an <end> token is generated.

• Example:
• Step 1: input <start> → model predicts “I”
• Step 2: feed predicted “I” → model predicts “love”
• Step 3: feed predicted “love” → model predicts “cats”

30



Seq2seq

• Q: How do we train a seq2seq/NMT system?

• A: Use a large parallel corpus and optimize parameters to
maximize the likelihood of the correct target sequence given the
source.

31



Seq2seq

• Q: How do we train a seq2seq/NMT system?
• A: Use a large parallel corpus and optimize parameters to
maximize the likelihood of the correct target sequence given the
source.

31



Seq2Seq: Multi-layer RNNs

• RNNs are already deep in time: At each timestep, an RNN passes
information from the previous hidden state to the next,
effectively stacking computations across many steps.

32



Seq2Seq: Multi-layer RNNs

• We can also add depth in layers: Instead of using just one RNN
layer, we can stack multiple RNNs on top of each other, where
the output of one layer becomes the input of the next
(multi-layer RNNs, stacked RNNs)

33



Seq2Seq: Multi-layer RNNS

34



Seq2Seq: Multi-layer RNNS (in practice)

• High-performing RNNs are usually multi-layer (but aren’t as
deep as convolutional or feed-forward networks)

• e.g., Britz et al. (2017) found that NMT, 2 to 4 layers, is the best for
the encoder RNN, and 4 layers is best for the decoder RNN

• Often 2 layers is a lot better than 1 layer.
• 3 might be a little better than 2 layers.

• Transformer-based networks (e.g., BERT) are usually deeper, like
12 or 24 layers.

35



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance

• More fluent
• Better use of context
• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized

• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent

• Better use of context
• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized

• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context

• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized

• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities

• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized

• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized
• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized

• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized
• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized
• Requires much less human engineering effort

• No feature engineering

• Same methods for all languages

36



Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities
• A single neural network to be optimized end-to-end

• No sub-components to be individually optimized
• Requires much less human engineering effort

• No feature engineering
• Same methods for all languages

36



Disadvantages of NMT

Compared to SMT:

• NMT is less interpretable

• Hard to debug
• Difficult to control (e.g., can’t easily specify rules or guidelines
for translation)

37



Disadvantages of NMT

Compared to SMT:

• NMT is less interpretable
• Hard to debug

• Difficult to control (e.g., can’t easily specify rules or guidelines
for translation)

37



Disadvantages of NMT

Compared to SMT:

• NMT is less interpretable
• Hard to debug
• Difficult to control (e.g., can’t easily specify rules or guidelines
for translation)

37



How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:

• n-gram precision (usually for 1, 2, 3, and 4-grams)
• Plus a penalty for too-short system translations

• BLUE is useful but imperfect

• There are many valid ways to translate a sentence
• So a good translation can get a poor BLUE score because it has
low n-gram overlap with the human translation

38



How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:

• n-gram precision (usually for 1, 2, 3, and 4-grams)

• Plus a penalty for too-short system translations
• BLUE is useful but imperfect

• There are many valid ways to translate a sentence
• So a good translation can get a poor BLUE score because it has
low n-gram overlap with the human translation

38



How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:

• n-gram precision (usually for 1, 2, 3, and 4-grams)
• Plus a penalty for too-short system translations

• BLUE is useful but imperfect

• There are many valid ways to translate a sentence
• So a good translation can get a poor BLUE score because it has
low n-gram overlap with the human translation

38



How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:

• n-gram precision (usually for 1, 2, 3, and 4-grams)
• Plus a penalty for too-short system translations

• BLUE is useful but imperfect

• There are many valid ways to translate a sentence
• So a good translation can get a poor BLUE score because it has
low n-gram overlap with the human translation

38



How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:

• n-gram precision (usually for 1, 2, 3, and 4-grams)
• Plus a penalty for too-short system translations

• BLUE is useful but imperfect
• There are many valid ways to translate a sentence

• So a good translation can get a poor BLUE score because it has
low n-gram overlap with the human translation

38



How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:

• n-gram precision (usually for 1, 2, 3, and 4-grams)
• Plus a penalty for too-short system translations

• BLUE is useful but imperfect
• There are many valid ways to translate a sentence
• So a good translation can get a poor BLUE score because it has
low n-gram overlap with the human translation

38



NMT: the first big success story of NLP deep learning

NMT went from a fringe research attempt in 2014 to the learning
standard method in 2016

This is amazing!

• SMT systems, built by hundreds of engineers over many years,
outperformed by NMT systems trained by small groups of
engineers in a few months

39



So, is MT solved?

No, many difficulties remain:

• Out-of-vocabulary words
• Domain mismatch between train and test data
• Maintaining context over longer text
• Low-resource language pairs
• Failures to accurately capture sentence meaning
• Pronoun (or zero pronoun) resolution errors
• Morphological agreement errors

40



Wrap-up



Wrap-up

• New task: Machine translation
• SMT →NMT

41



Review: Dependency parser
training



Approaches

• SpaCy: 11
• PyTorch: 5
• Graph-based parser: 1

42



LAS scoreboard (Top 5)

Rank LAS
1 92.76
2 91.66
3 87.02
4 86.76
5 85.04

Average: 74.5

43



Reminder

44


	Review
	Machine translation
	Neural machine translation
	Wrap-up
	Review: Dependency parser training

