

7. Machine Translation, Seq2seq

LING-581-Natural Language Processing 1

Instructor: Hakyung Sung

October 2, 2025

*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University

Table of contents

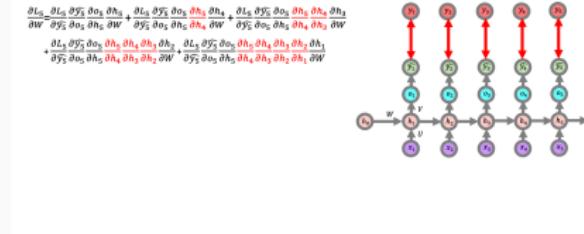
1. Machine translation
2. Neural machine translation
3. Wrap-up
4. Review: Dependency parser training

Review

Review

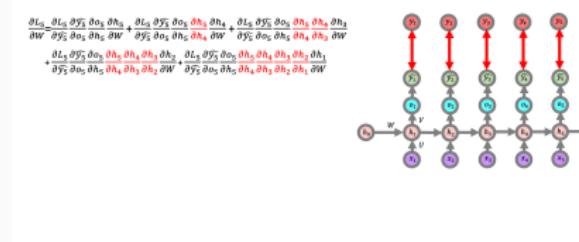
- RNNs
- Problems with RNNs
- LSTMs
- Bidirectional RNNs

Review: Problems with RNNs



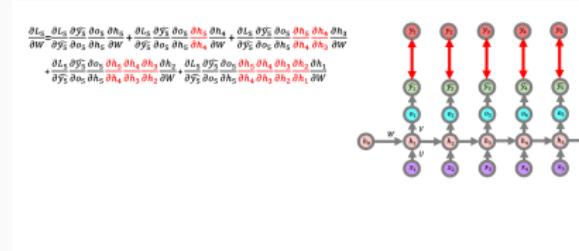
- RNNs are equivalent to a deep network of depth T when unrolled over time (T = sequence length/time steps)

Review: Problems with RNNs



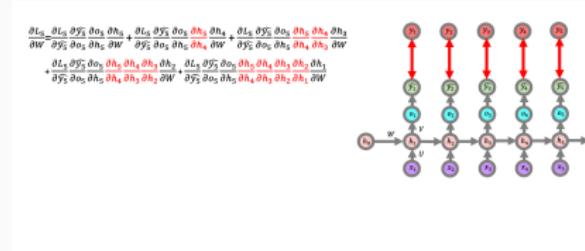
- RNNs are equivalent to a deep network of depth T when unrolled over time (T = sequence length/time steps)
- **Parameter sharing:** the same weight matrices are multiplied at each time step.

Review: Problems with RNNs



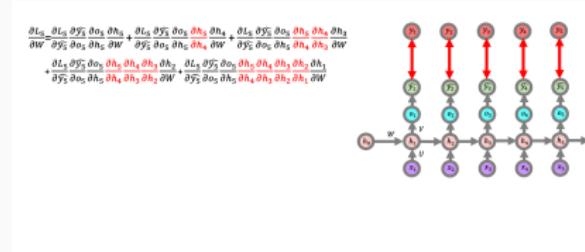
- RNNs are equivalent to a deep network of depth T when unrolled over time (T = sequence length/time steps)
- **Parameter sharing:** the same weight matrices are multiplied at each time step.
- If each multiplication factor:

Review: Problems with RNNs



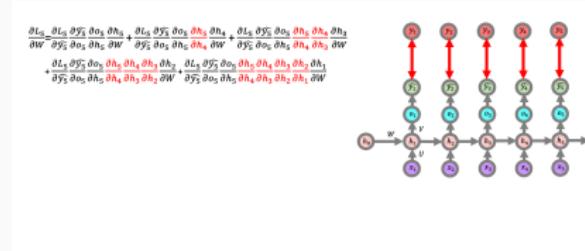
- RNNs are equivalent to a deep network of depth T when unrolled over time (T = sequence length/time steps)
- **Parameter sharing:** the same weight matrices are multiplied at each time step.
- If each multiplication factor:
 - is < 1 , gradients shrink exponentially (vanishing).

Review: Problems with RNNs



- RNNs are equivalent to a deep network of depth T when unrolled over time (T = sequence length/time steps)
- **Parameter sharing:** the same weight matrices are multiplied at each time step.
- If each multiplication factor:
 - is < 1 , gradients shrink exponentially (vanishing).
 - is > 1 , gradients grow exponentially (exploding).

Review: Problems with RNNs

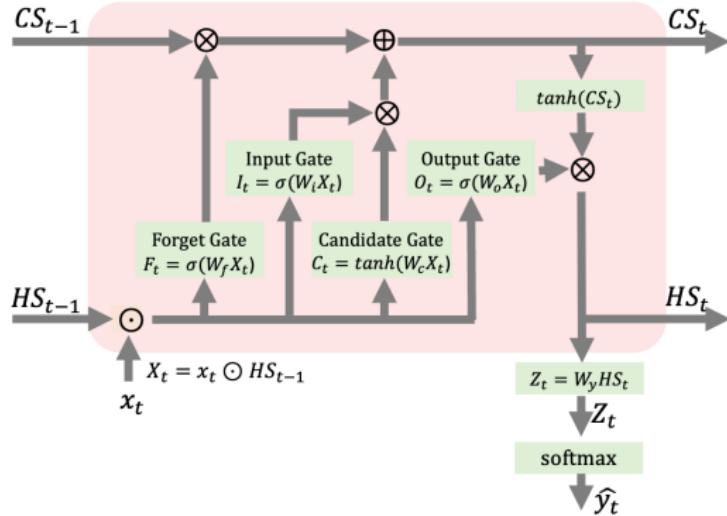


- RNNs are equivalent to a deep network of depth T when unrolled over time (T = sequence length/time steps)
- **Parameter sharing:** the same weight matrices are multiplied at each time step.
- If each multiplication factor:
 - is < 1 , gradients shrink exponentially (vanishing).
 - is > 1 , gradients grow exponentially (exploding).
- Standard feedforward nets have limited depth, so this extreme behavior is less pronounced.

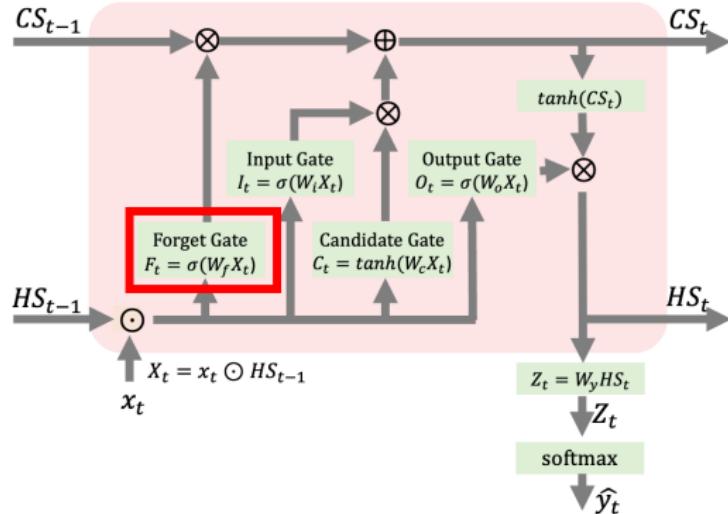
Vanishing problem: Solution

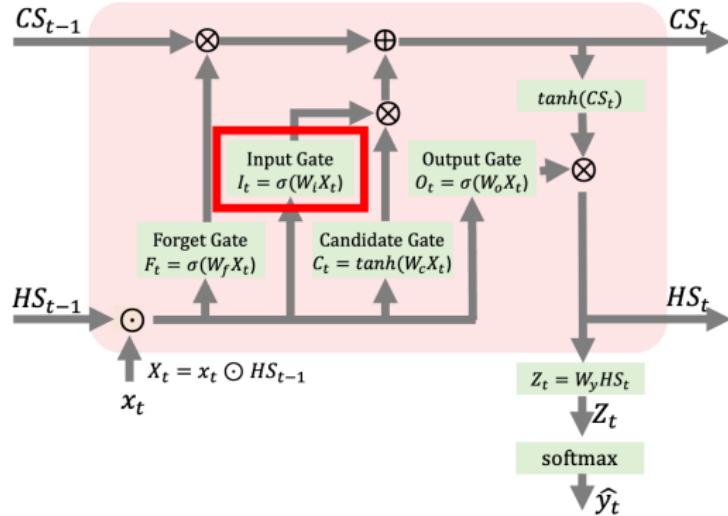
Separate memory cell with gating mechanisms to
add/erase information.

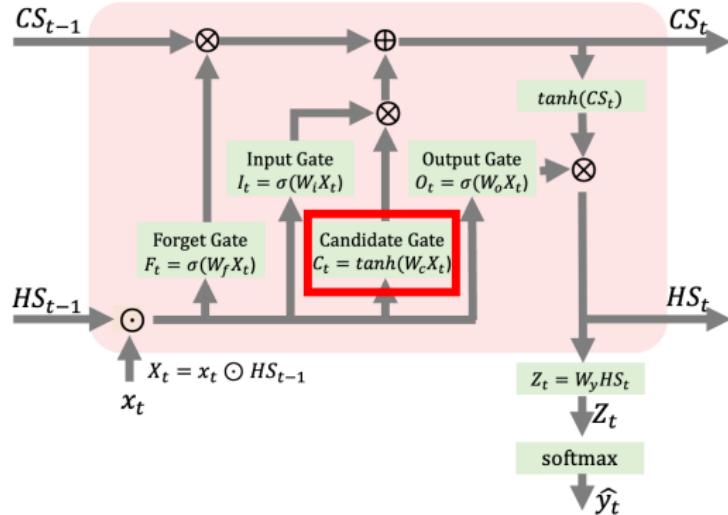
Review: LSTMs

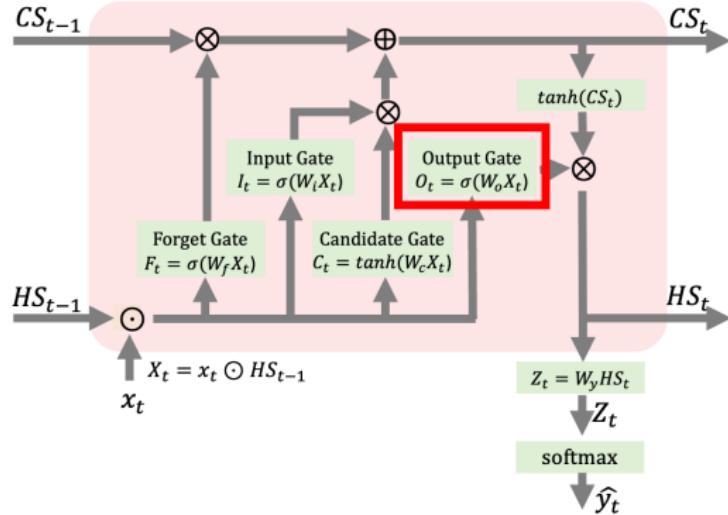








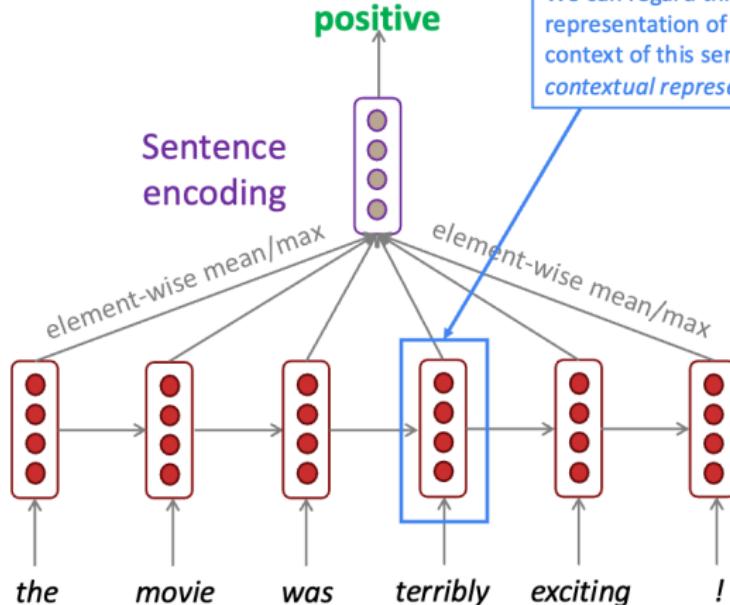




Review: Bidirectional RNNs

- A standard RNN only uses past context.
- Bidirectional RNNs process the sequence in both directions.

Task: Sentiment Classification

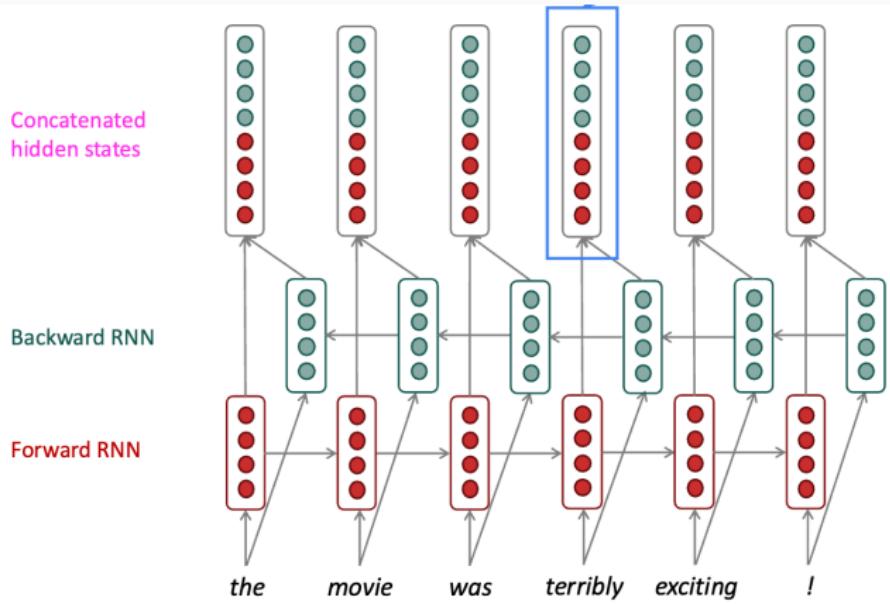


We can regard this hidden state as a representation of the word "terribly" in the context of this sentence. We call this a *contextual representation*.

These contextual representations only contain information about the *left context* (e.g. "the movie was").

What about *right context*?

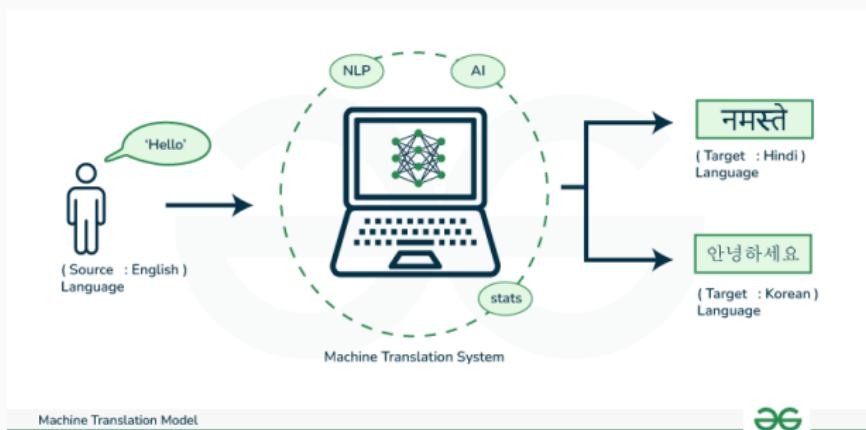
In this example, "exciting" is in the right context and this modifies the meaning of "terribly" (from negative to positive)



Machine translation

Pre-neural machine translation

- Machine Translation (MT) is the task of translating a sentence x from one language (**source language**) to a sentence y in another language (**target language**)



Source: <https://www.geeksforgeeks.org/nlp/machine-translation-of-languages-in-artificial-intelligence/>

The early history of MT: 1950s

- Machine translation research began in the early 1950s on machines less powerful than high school calculators (before the term **AI** was coined)

The early history of MT: 1950s

- Machine translation research began in the early 1950s on machines less powerful than high school calculators (before the term **AI** was coined)
- Concurrent with foundational work on automata, formal languages, probabilities, and information theory

The early history of MT: 1950s

- Machine translation research began in the early 1950s on machines less powerful than high school calculators (before the term **AI** was coined)
- Concurrent with foundational work on automata, formal languages, probabilities, and information theory
- MT heavily funded by military, but basically just **simple rule-based systems** doing word substitution

The early history of MT: 1950s

- Machine translation research began in the early 1950s on machines less powerful than high school calculators (before the term **AI** was coined)
- Concurrent with foundational work on automata, formal languages, probabilities, and information theory
- MT heavily funded by military, but basically just **simple rule-based systems** doing word substitution
- Human language is more complicated than that, and varies more across languages

The early history of MT: 1950s

- Machine translation research began in the early 1950s on machines less powerful than high school calculators (before the term **AI** was coined)
- Concurrent with foundational work on automata, formal languages, probabilities, and information theory
- MT heavily funded by military, but basically just **simple rule-based systems** doing word substitution
- Human language is more complicated than that, and varies more across languages
- Little understanding of natural language syntax, semantics, pragmatics ... problem soon appeared intractable...

1990s-2010s: Statistical machine translation (SMT)

- **Idea:** Learn a probabilistic model of translation from data.

1990s-2010s: Statistical machine translation (SMT)

- **Idea:** Learn a probabilistic model of translation from data.
- Example: Translating from French → English.

1990s-2010s: Statistical machine translation (SMT)

- **Idea:** Learn a probabilistic model of translation from data.
- Example: Translating from French \rightarrow English.
- Goal: Find the best English \mathbf{y} , given a French \mathbf{x} :

$$\operatorname{argmax}_y P(y \mid x)$$

1990s-2010s: Statistical machine translation (SMT)

- **Idea:** Learn a probabilistic model of translation from data.
- Example: Translating from French \rightarrow English.
- Goal: Find the best English \mathbf{y} , given a French \mathbf{x} :

$$\operatorname{argmax}_y P(y | x)$$

- Directly modeling $P(y | x)$ is difficult!

1990s-2010s: SMT

- Using Bayes' Theorem:

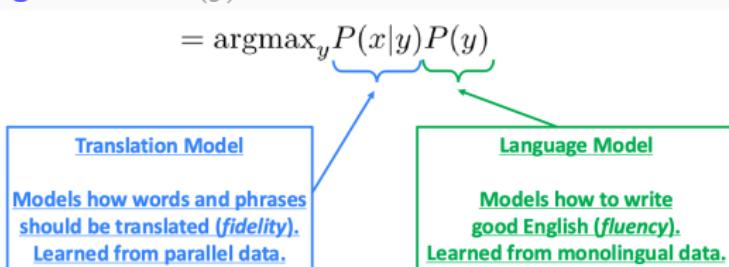
$$P(y | x) = \frac{P(x | y) P(y)}{P(x)}$$

- Since $P(x)$ is fixed (bc we cannot change the input), we can rewrite the search as:

$$\operatorname{argmax}_y P(x | y) \cdot P(y)$$

- This gives two components to be learned separately:
 - Translation Model: $P(x | y)$
 - Language Model: $P(y)$

$$= \operatorname{argmax}_y P(x|y)P(y)$$



1990s–2010s: SMT

- How do we build a language model?

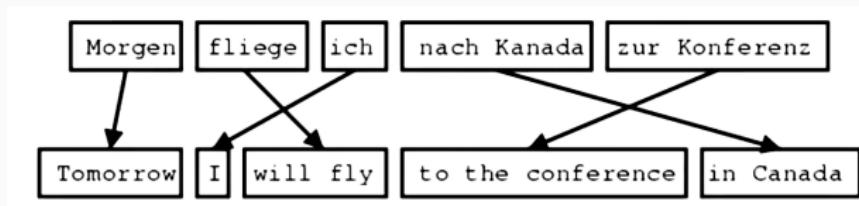
1990s–2010s: SMT

- How do we build a language model?
- How can we learn a translation model $P(x \mid y)$?

- How do we build a language model?
- How can we learn a translation model $P(x | y)$?
- Requirement: A large amount of **parallel data** (e.g., pairs of human-translated French/English sentences)

Learning alignment of SMT

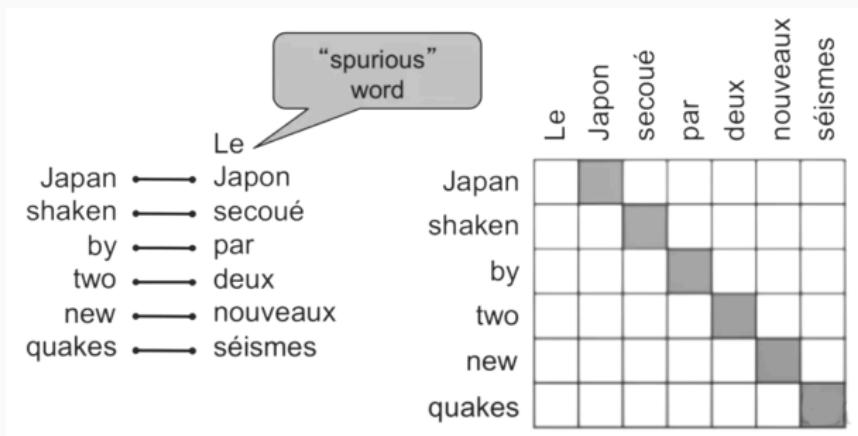
- How to learn translation model $P(x | y)$ from the parallel corpus?
- Break it down further: Introduce latent a variable into the model $P(x, a | y)$
- where a is the *alignment* (i.e., word-level correspondence between source sentence x and target sentence y)



More notes: Alignment

Alignment is the correspondence between particular words in the translated sentence pair.

- Typological differences between languages lead to complicated alignments
- Some words might have no counterpart (or too many); not one-to-one correspondence



More notes: Learning alignment

We learn $P(x, a | y)$ where:

- y : source sentence (e.g., English)
- x : target sentence (e.g., French)
- a : word alignment (latent mapping between words in y and x)

- Alignment a is latent: it is not explicitly given in the training data.

More notes: Learning alignment

We learn $P(x, a | y)$ where:

- y : source sentence (e.g., English)
- x : target sentence (e.g., French)
- a : word alignment (latent mapping between words in y and x)

- Alignment a is latent: it is not explicitly given in the training data.
- Requires special learning algorithms to estimate parameters with latent variables.

More notes: Learning alignment

We learn $P(x, a | y)$ where:

- y : source sentence (e.g., English)
- x : target sentence (e.g., French)
- a : word alignment (latent mapping between words in y and x)

- Alignment a is latent: it is not explicitly given in the training data.
- Requires special learning algorithms to estimate parameters with latent variables.
- e.g., Expectation-Maximization algorithm

More notes: Learning alignment

We learn $P(x, a | y)$ where:

- y : source sentence (e.g., English)
- x : target sentence (e.g., French)
- a : word alignment (latent mapping between words in y and x)

- Alignment a is latent: it is not explicitly given in the training data.
- Requires special learning algorithms to estimate parameters with latent variables.
- e.g., Expectation-Maximization algorithm
 - **E-step:** given current parameters, estimate how likely each possible alignment is (soft alignment).

More notes: Learning alignment

We learn $P(x, a | y)$ where:

- y : source sentence (e.g., English)
- x : target sentence (e.g., French)
- a : word alignment (latent mapping between words in y and x)

- Alignment a is latent: it is not explicitly given in the training data.
- Requires special learning algorithms to estimate parameters with latent variables.
- e.g., Expectation-Maximization algorithm
 - **E-step:** given current parameters, estimate how likely each possible alignment is (soft alignment).
 - **M-step:** re-estimate translation probabilities $t(x | y)$ using those expectations.

1990s–2010s: SMT

- SMT was a huge research field

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
- Lots of human effort to maintain

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
- Lots of human effort to maintain
 - Repeated effort for each language pair!

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
- Lots of human effort to maintain
 - Repeated effort for each language pair!
- Era of statistical model then →?

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
- Lots of human effort to maintain
 - Repeated effort for each language pair!
- **Era of statistical model then →?**
 - word embedding

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
- Lots of human effort to maintain
 - Repeated effort for each language pair!
- **Era of statistical model then →?**
 - word embedding
 - (text classification)

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
- Lots of human effort to maintain
 - Repeated effort for each language pair!
- **Era of statistical model then →?**
 - word embedding
 - (text classification)
 - dependency parsing

1990s–2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details
- Systems had many separately-designed sub-components
 - Need to design features to capture particular language phenomena
- Required compiling and maintaining extra resources
 - Like tables of equivalent phrases
- Lots of human effort to maintain
 - Repeated effort for each language pair!
- Era of statistical model then →?
 - word embedding
 - (text classification)
 - dependency parsing
 - language modeling

Neural machine translation

2014

Neural
Machine
Translation

MT research

(dramatic reenactment)

What is neural machine translation?

- Neural machine translation (NMT) is a way to do machine translation with a single end-to-end neural network.

What is neural machine translation?

- Neural machine translation (NMT) is a way to do machine translation with a single end-to-end neural network.
- The neural network architecture is called a sequence-to-sequence (**seq2seq**) and it involves two RNNs (more generally, *neural networks*).

Seq2Seq Model

- Idea: Mapping one sequence to another.

Seq2Seq Model

- Idea: Mapping one sequence to another.
- **Encoder:** Reads the input sequence and converts it into a vector representation.

Seq2Seq Model

- Idea: Mapping one sequence to another.
- **Encoder:** Reads the input sequence and converts it into a vector representation.
- **Decoder:** Generates the output sequence step by step, conditioned on the encoded input.

Seq2Seq Model

- Idea: Mapping one sequence to another.
- **Encoder:** Reads the input sequence and converts it into a vector representation.
- **Decoder:** Generates the output sequence step by step, conditioned on the encoded input.
- Can be implemented with different architectures:

Seq2Seq Model

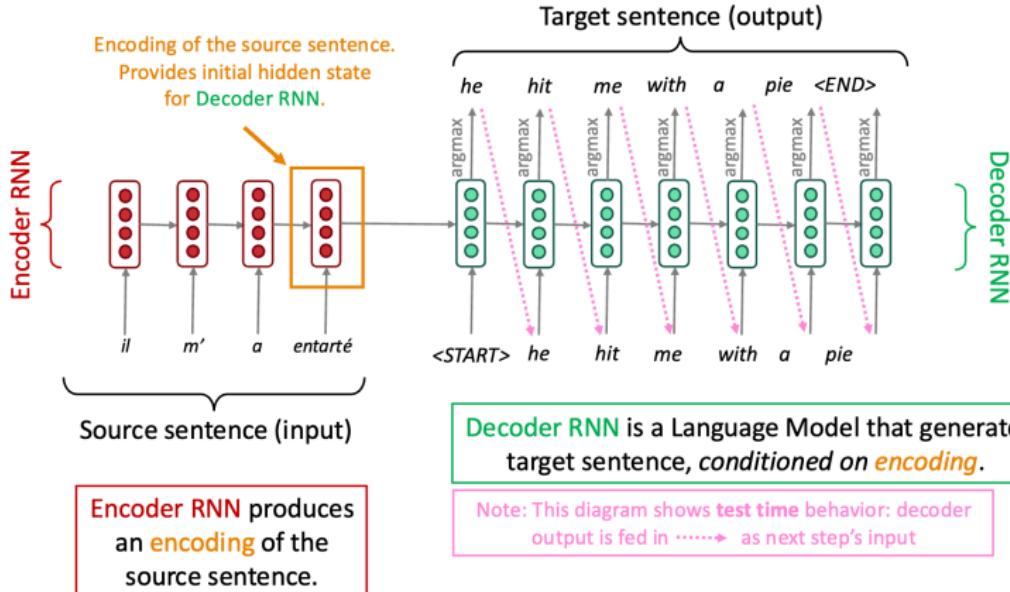
- Idea: Mapping one sequence to another.
- **Encoder:** Reads the input sequence and converts it into a vector representation.
- **Decoder:** Generates the output sequence step by step, conditioned on the encoded input.
- Can be implemented with different architectures:
 - Early models: RNN/LSTM-based encoder-decoder

Seq2Seq Model

- Idea: Mapping one sequence to another.
- **Encoder:** Reads the input sequence and converts it into a vector representation.
- **Decoder:** Generates the output sequence step by step, conditioned on the encoded input.
- Can be implemented with different architectures:
 - Early models: RNN/LSTM-based encoder-decoder
 - Modern models: Transformer encoder-decoder

Seq2Seq Model

The sequence-to-sequence model



- The encoder reads the input sequence step by step and accumulates information in its hidden states.

- The encoder reads the input sequence step by step and accumulates information in its hidden states.
- The final hidden state acts as a **context vector** that summarizes the entire input sequence.

- The encoder reads the input sequence step by step and accumulates information in its hidden states.
- The final hidden state acts as a **context vector** that summarizes the entire input sequence.
- e.g., The encoder processes the French sentence and compresses it into a single vector representation.

- The decoder takes the context vector as its initial state and generates the output sequence one token at a time.

- The decoder takes the context vector as its initial state and generates the output sequence one token at a time.
- At each step, it uses the previous hidden state, the previously generated token, and the context vector to compute the next hidden state.

- During training, the decoder does not rely on its own previous predictions. Instead, it receives the **ground truth word** from the training data as input.

- During training, the decoder does not rely on its own previous predictions. Instead, it receives the **ground truth word** from the training data as input.
- This strategy is called **teacher forcing**.

- During training, the decoder does not rely on its own previous predictions. Instead, it receives the **ground truth word** from the training data as input.
- This strategy is called **teacher forcing**.
- Advantage: learning becomes stable and converges faster, since errors do not propagate.

- During training, the decoder does not rely on its own previous predictions. Instead, it receives the **ground truth word** from the training data as input.
- This strategy is called **teacher forcing**.
- Advantage: learning becomes stable and converges faster, since errors do not propagate.
- Example: For the target sentence “I love cats”,

- During training, the decoder does not rely on its own previous predictions. Instead, it receives the **ground truth word** from the training data as input.
- This strategy is called **teacher forcing**.
- Advantage: learning becomes stable and converges faster, since errors do not propagate.
- Example: For the target sentence “I love cats”,
 - Step 1: input `<start>` → train model to output “I”

- During training, the decoder does not rely on its own previous predictions. Instead, it receives the **ground truth word** from the training data as input.
- This strategy is called **teacher forcing**.
- Advantage: learning becomes stable and converges faster, since errors do not propagate.
- Example: For the target sentence “I love cats”,
 - Step 1: input `<start>` → train model to output “I”
 - Step 2: feed the true word “I” → train model to output “love”

- During training, the decoder does not rely on its own previous predictions. Instead, it receives the **ground truth word** from the training data as input.
- This strategy is called **teacher forcing**.
- Advantage: learning becomes stable and converges faster, since errors do not propagate.
- Example: For the target sentence “I love cats”,
 - Step 1: input `<start>` → train model to output “I”
 - Step 2: feed the true word “I” → train model to output “love”
 - Step 3: feed the true word “love” → train model to output “cats”

(Decoding at Test Time)

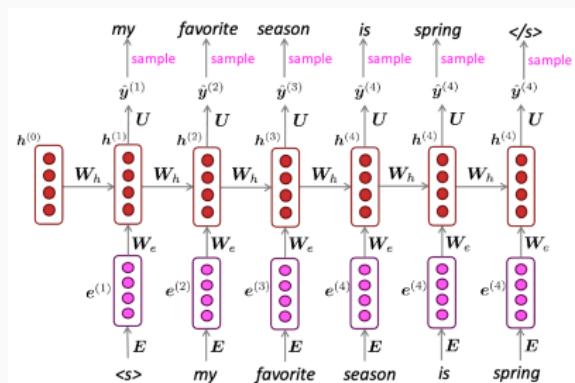
- At inference time, the true target words are not available.
- The decoder must use its own **predicted word** from the previous step as the next input.
- The process starts with a special `<start>` token and continues until an `<end>` token is generated.
- Example:
 - Step 1: input `<start>` → model predicts “I”
 - Step 2: feed predicted “I” → model predicts “love”
 - Step 3: feed predicted “love” → model predicts “cats”

- Q: How do we train a seq2seq/NMT system?

- Q: How do we train a seq2seq/NMT system?
- A: Use a large parallel corpus and optimize parameters to maximize the likelihood of the correct target sequence given the source.

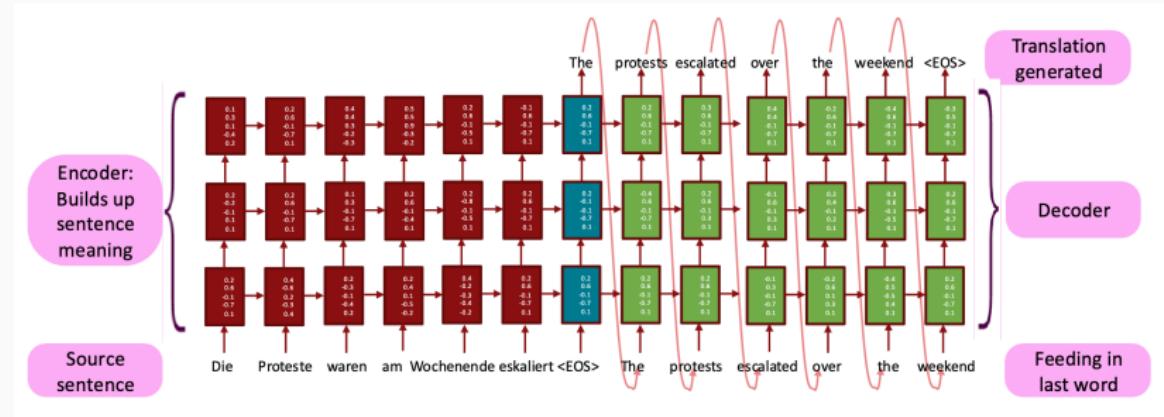
Seq2Seq: Multi-layer RNNs

- RNNs are already *deep* in time: At each timestep, an RNN passes information from the previous hidden state to the next, effectively stacking computations across many steps.



- We can also add depth in layers: Instead of using just one RNN layer, we can stack multiple RNNs on top of each other, where the output of one layer becomes the input of the next
(multi-layer RNNs, stacked RNNs)

Seq2Seq: Multi-layer RNNS



Seq2Seq: Multi-layer RNNs (in practice)

- High-performing RNNs are usually multi-layer (but aren't as deep as convolutional or feed-forward networks)
- e.g., Britz et al. (2017) found that NMT, 2 to 4 layers, is the best for the encoder RNN, and 4 layers is best for the decoder RNN
 - Often 2 layers is a lot better than 1 layer.
 - 3 might be a little better than 2 layers.
- Transformer-based networks (e.g., BERT) are usually deeper, like 12 or 24 layers.

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent
- Better use of context

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent
- Better use of context
- Better use of phrase similarities

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent
- Better use of context
- Better use of phrase similarities
- A single neural network to be optimized end-to-end

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent
- Better use of context
- Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No sub-components to be individually optimized

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent
- Better use of context
- Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No sub-components to be individually optimized
- Requires much less human engineering effort

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent
- Better use of context
- Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No sub-components to be individually optimized
- Requires much less human engineering effort
 - No feature engineering

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
- More fluent
- Better use of context
- Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No sub-components to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same methods for all languages

Disadvantages of NMT

Compared to SMT:

- NMT is less interpretable

Disadvantages of NMT

Compared to SMT:

- NMT is less interpretable
- Hard to debug

Disadvantages of NMT

Compared to SMT:

- NMT is less interpretable
- Hard to debug
- Difficult to control (e.g., can't easily specify rules or guidelines for translation)

How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or several human-written translations(s), and computes a similarity scores based on:

How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or several human-written translations(s), and computes a similarity scores based on:
 - n-gram precision (usually for 1, 2, 3, and 4-grams)

How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or several human-written translations(s), and computes a similarity scores based on:
 - n-gram precision (usually for 1, 2, 3, and 4-grams)
 - Plus a penalty for too-short system translations

How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or several human-written translations(s), and computes a similarity scores based on:
 - n-gram precision (usually for 1, 2, 3, and 4-grams)
 - Plus a penalty for too-short system translations
- BLEU is useful but imperfect

How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or several human-written translations(s), and computes a similarity scores based on:
 - n-gram precision (usually for 1, 2, 3, and 4-grams)
 - Plus a penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence

How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or several human-written translations(s), and computes a similarity scores based on:
 - n-gram precision (usually for 1, 2, 3, and 4-grams)
 - Plus a penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n -gram overlap with the human translation

NMT: the first big success story of NLP deep learning

NMT went from a fringe research attempt in 2014 to the learning standard method in 2016

2014: First seq2seq paper published [Sutskever et al. 2014]

2016: Google Translate switches from SMT to NMT – and by 2018 everyone has

This is amazing!

- SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by small groups of engineers in a few months

So, is MT solved?

No, many difficulties remain:

- Out-of-vocabulary words
- Domain mismatch between train and test data
- Maintaining context over longer text
- Low-resource language pairs
- Failures to accurately capture sentence meaning
- Pronoun (or zero pronoun) resolution errors
- Morphological agreement errors

Wrap-up

Wrap-up

- New task: Machine translation
- SMT → NMT

Review: Dependency parser training

Approaches

- SpaCy: 11
- PyTorch: 5
- Graph-based parser: 1

LAS scoreboard (Top 5)

Rank	LAS
1	92.76
2	91.66
3	87.02
4	86.76
5	85.04

Average: 74.5

1. Background research brief

Released on Tuesday 09/16/2025

Each group should submit the following to prepare your background-research presentation and to seed your final presentation/paper. Please aim to have a working draft ready for your group check-in on October 9th. After the group meeting, the final version of the draft should be submitted by October 10th (Friday). This is not a graded assignment.

Things to include

1. Topic / Area

- One sentence stating the focus
- 3–5 keywords

2. Research question / Problem

- 1–2 sentences clearly stating the core question or hypothesis

3. Mini annotated bibliography (3–5 papers) — for each paper include:

- Full citation (consistent style)
- 1-sentence contribution (key finding/idea)
- Method/Data (e.g., corpus, model, experiment)
- Relevance (why it matters for your group project)