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Review: Problems with RNNs

- RNNs are equivalent to a deep network of depth T" when
unrolled over time (T = sequence length/time steps)
- Parameter sharing: the same weight matrices are multiplied at
each time step.
- If each multiplication factor:
- is < 1, gradients shrink exponentially (vanishing).
- is > 1, gradients grow exponentially (exploding).
- Standard feedforward nets have limited depth, so this extreme
behavior is less pronounced.



Vanishing problem: Solution

Separate memory cell with gating mechanisms to
add/erase information.




Review: LSTMs
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Review: Bidirectional RNNs

- A standard RNN only uses past context.

- Bidirectional RNNs process the sequence in both directions.

1



Task: Sentiment Classification

. We can regard this hidden state as a
pOSItIVE representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

Sentence
encoding

the movie was terribly  exciting

These contextual
representations only
contain information
about the /eft context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)
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Machine translation



Pre-neural machine translation

- Machine Translation (MT) is the task of translating a sentence x

from one language (source language) to a sentence y in another
language (target language)

— [T |

(Target : Hindi)
Language

o

;> [Fe]

(Target : Korean )
Language

(Source : English)
Language

Machine Translation System

Machine Translation Model

==

Source: https://www.geeksforgeeks.org/nlp/machine-translation-of-languages-in-artificial-intelligence/
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The early history of MT: 1950s

- Machine translation research began in the early 1950s on
machines less powerful than high school calculators (before the
term Al was coined)

- Concurrent with foundational work on automata, formal
languages, probabilities, and information theory

- MT heavily funded by military, but basically just simple
rule-based systems doing word substitution

- Human language is more complicated than that, and varies
more across languages

- Little understanding of natural language syntax, semantics,
pragmatics ... problem soon appeared intractable...
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1990s-2010s: Statistical machine translation (SMT)

- ldea: Learn a probabilistic model of translation from data.
- Example: Translating from French — English.

- Goal: Find the best English y, given a French x:
argmax, P(y | z)

- Directly modeling P(y | x) is difficult!
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1990s-2010s: SMT

- Using Bayes’ Theorem:

Ply| o) = 0

- Since P(z) is fixed (bc we cannot change the input), we can
rewrite the search as:

argmax, P(z|y)- P(y)

- This gives two components to be learned separately:
- Translation Model: P(x | y)
- Language Model: P(y)

= argmaxyP(x|y)P(y)
H_/H_J
Translation Model / Language Model
Models how words and phrases Models how to write
should be translated (fidelity). good English (fluency).
Learned from parallel data. Learned from monolingual data.
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1990s-2010s: SMT

- How do we build a language model?
- How can we learn a translation model P(z | y)?

- Requirement: A large amount of parallel data (e.g, pairs of
human-translated French/English sentences)



Learning alignment of SMT

- How to learn translation model P(z | y) from the parallel
corpus?

- Break it down further: Introduce latent a variable into the model
P(z,aly)

- where a is the alignment (i.e., word-level correspondence
between source sentence x and target sentence y)

| Morgenl I fliegel [ nach Kanadal I:ur Konferen:z I

Tomorrow will fly I to the conferencel |1n Canada I
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tes: Alignment

Alignment is the correspondence between particular words in the
translated sentence pair.

- Typological differences between languages lead to complicated
alignments

- Some words might have no counterpart (or too many); not
one-to-one correspondence

spurious < o .8 g
o 8 L 3 3 0
O © O © O O O
Le - D (2] Q T cC w
Japan —— Japon Japan
shaken —— secoué shaken
by e—— par
two —— deux by
new —— nouveaux two
quakes —— séismes new i
quakes .
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More notes: Learning alignment

We learn P(z,a | y) where:

- g source sentence (e.g., English)
- z: target sentence (e.g., French)

- a: word alignment (latent mapping between words in y and z)

- Alignment a is latent: it is not explicitly given in the training data.
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We learn P(z,a | y) where:

- y: source sentence (e.g, English)
- z: target sentence (e.g., French)

- a: word alignment (latent mapping between words in y and z)

- Alignment a is latent: it is not explicitly given in the training data.

- Requires special learning algorithms to estimate parameters
with latent variables.

- e.g, Expectation-Maximization algorithm

- E-step: given current parameters, estimate how likely each
possible alignment is (soft alignment).

- M-step: re-estimate translation probabilities ¢(z | y) using those
expectations.
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1990s-2010s: SMT

- SMT was a huge research field
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1990s-2010s: SMT

- SMT was a huge research field
- The best systems were extremely complex
- Hundreds of important details
- Systems had many separately-designed sub-components
- Need to design features to capture particular language
phenomena
- Required compiling and maintaining extra resources
- Like tables of equivalent phrases
- Lots of human effort to maintain
- Repeated effort for each language pair!
- Era of statistical model then »?
- word embedding
- (text classification)
- dependency parsing
- language modeling
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Neural machine translation
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What is neural machine translation?

- Neural machine translation (NMT) is a way to do machine
translation with a single end-to-end neural network.
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What is neural machine translation?

- Neural machine translation (NMT) is a way to do machine
translation with a single end-to-end neural network.

- The neural network architecture is called a
sequence-to-sequence (seg2seq) and it involves two RNNs
(more generally, neural networks).

24



Seq2Seq Model

- ldea: Mapping one sequence to another.
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Seq2Seq Model

- ldea: Mapping one sequence to another.

- Encoder: Reads the input sequence and converts it into a vector
representation.

- Decoder: Generates the output sequence step by step,
conditioned on the encoded input.

- Can be implemented with different architectures:

- Early models: RNN/LSTM-based encoder-decoder
- Modern models: Transformer encoder-decoder
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Seq2Seq Model

The sequence-to-sequence model

Target sentence (output)
Encoding of the source sentence. A

; r N\

Provides initial hidden state . . .

for Decoder RNN. he hit me with a pie <END>
=2 \ g
z 8
o aQ
3 2
=

2 z
w 2

it m’a  entarté <START> he  hit me with a pie

N J
Y .
Source sentence (input) Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.
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Seq2Seq: Encoder

- The encoder reads the input sequence step by step and
accumulates information in its hidden states.
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Seq2Seq: Encoder

- The encoder reads the input sequence step by step and
accumulates information in its hidden states.

- The final hidden state acts as a context vector that summarizes
the entire input sequence.

- e.g, The encoder processes the French sentence and
compresses it into a single vector representation.

27



Seq2Seq: Decoder

- The decoder takes the context vector as its initial state and
generates the output sequence one token at a time.
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Seq2Seq: Decoder

- The decoder takes the context vector as its initial state and
generates the output sequence one token at a time.

- At each step, it uses the previous hidden state, the previously
generated token, and the context vector to compute the next
hidden state.
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Seq2Seq: Training

- During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

29



Seq2Seq: Training

- During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the

training data as input.
- This strategy is called teacher forcing.

29



Seq2Seq: Training

- During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the

training data as input.

- This strategy is called teacher forcing.

- Advantage: learning becomes stable and converges faster, since
errors do not propagate.

29



Seq2Seq: Training

- During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

- This strategy is called teacher forcing.

- Advantage: learning becomes stable and converges faster, since
errors do not propagate.
- Example: For the target sentence “I love cats”,

29



Seq2Seq: Training

- During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

- This strategy is called teacher forcing.

- Advantage: learning becomes stable and converges faster, since
errors do not propagate.

- Example: For the target sentence “I love cats”,

- Step 1: input <start> — train model to output “I"

29



Seq2Seq: Training

- During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

- This strategy is called teacher forcing.

- Advantage: learning becomes stable and converges faster, since
errors do not propagate.

- Example: For the target sentence “I love cats”,

- Step 1: input <start> — train model to output “I"
- Step 2: feed the true word “I” — train model to output “love”

29



Seq2Seq: Training

- During training, the decoder does not rely on its own previous
predictions. Instead, it receives the ground truth word from the
training data as input.

- This strategy is called teacher forcing.

- Advantage: learning becomes stable and converges faster, since
errors do not propagate.

- Example: For the target sentence “I love cats”,

- Step 1: input <start> — train model to output “I"
- Step 2: feed the true word “I” — train model to output “love”
- Step 3: feed the true word “love” — train model to output “cats”
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Seq2Seq: Inference

(Decoding at Test Time)

- At inference time, the true target words are not available.

- The decoder must use its own predicted word from the previous
step as the next input.

- The process starts with a special <start> token and continues
until an <end> token is generated.
- Example:

- Step 1: input <start> — model predicts “I"
- Step 2: feed predicted “I” — model predicts “love”
- Step 3: feed predicted “love” — model predicts “cats”

30



- Q: How do we train a seq2seq/NMT system?
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- Q: How do we train a seq2seq/NMT system?

- A: Use a large parallel corpus and optimize parameters to
maximize the likelihood of the correct target sequence given the
source.
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2Seq: Multi-layer RNNs

- RNNs are already deep in time: At each timestep, an RNN passes
information from the previous hidden state to the next,
effectively stacking computations across many steps.

my favorite  season is spring </s>

sample  [sample  [sample  [sample [sample Tsammc

H §@ §@® ] G4 G

<s> my favorite  season is spring
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Seq2Seq: Multi-layer RNNs

- We can also add depth in layers: Instead of using just one RNN
layer, we can stack multiple RNNs on top of each other, where
the output of one layer becomes the input of the next
(multi-layer RNNs, stacked RNNs)
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Seq2Seq: Multi-layer RNNS

Translation
The | protests escalated over | the | weekend <EQS> e
Encoder:
Builds uj
P Decoder
sentence
meaning
Source Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated | qver | the weekend Feeding in
sentence last word
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Seq2Seq: Multi-layer RNNS (in practice)

- High-performing RNNs are usually multi-layer (but aren’t as
deep as convolutional or feed-forward networks)

- e.g, Britz et al. (2017) found that NMT, 2 to & layers, is the best for
the encoder RNN, and 4 layers is best for the decoder RNN

- Often 2 layers is a lot better than 1 layer.
- 3 might be a little better than 2 layers.

- Transformer-based networks (e.g., BERT) are usually deeper, like
12 or 24 layers.
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Compared to SMT, NMT has many advantages:

- Better performance
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Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance

- More fluent

- Better use of context

- Better use of phrase similarities

- A single neural network to be optimized end-to-end
- No sub-components to be individually optimized

- Requires much less human engineering effort

- No feature engineering
- Same methods for all languages
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Disadvantages of NMT

Compared to SMT:
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Disadvantages of NMT

Compared to SMT:

- NMT is less interpretable
- Hard to debug

- Difficult to control (e.g., can't easily specify rules or guidelines
for translation)
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How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:
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How do we evaluate MT?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the machine-written translation to one or
several human-written translations(s), and computes a similarity
scores based on:

- n-gram precision (usually for 1, 2, 3, and 4-grams)
- Plus a penalty for too-short system translations

- BLUE is useful but imperfect
- There are many valid ways to translate a sentence
- So a good translation can get a poor BLUE score because it has
low n-gram overlap with the human translation
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NMT: the first big success story of NLP deep learning

NMT went from a fringe research attempt in 2014 to the learning
standard method in 2016

2014: First seq2seq paper published [Sutskever et al. 2014]

2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B® Microsoft  &sverran  Google
Baithmm ®Bsus  Tencentiil  ©)mmigx

This is amazing!

- SMT systems, built by hundreds of engineers over many years,
outperformed by NMT systems trained by small groups of
engineers in a few months
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So, is MT solved?

No, many difficulties remain:

- Qut-of-vocabulary words

- Domain mismatch between train and test data

- Maintaining context over longer text

- Low-resource language pairs

- Failures to accurately capture sentence meaning
- Pronoun (or zero pronoun) resolution errors

- Morphological agreement errors
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Wrap-up




- New task: Machine translation
« SMT > NMT
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Review: Dependency parser
training




- SpaCy: 1
- PyTorch: 5
- Graph-based parser: 1
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LAS scoreboard (Top 5)

Average: 74.5

Rank

g B~ W N

LAS
92.76
91.66
87.02
86.76
85.04
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Reminder

1. Background research brief

Released on Tuesday 09/16/2025

Each groups should submit the following to prepare your background-research presentation and to seed your final
presentation/paper. Please aim to have a working draft ready for your group check-in on October 9th. After the group meeting, the
final version of the draft should be submitted by October 10th (Friday). This is not a graded assignment.

Things to include

1. Topic/ Area
- One sentence stating the focus
- 3-5 keywords
2. Research question / Problem
- 1-2 sentences clearly stating the core question or hypothesis
3. Mini annotated bibliography (3-5 papers) — for each paper include:

- Full citation (consistent style)

- 1-sentence contribution (key finding/idea)

- Method/Data (e.g., corpus, model, experiment)

- Relevance (why it matters for your group project)
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